Géotechnique des ouvrages souterrains comportements post rupture

Thierry YOU,

CFMR/AFTES 2006

Géotechnique des ouvrages souterrains

comportements post rupture

Laboratoire

Retours d'expérience

□ Conclusions

CFMR/AFTES 2006

D'après Lockner et al. Observations of quasi-Static fault growth from acoustic emissions, in Fault Mechanics and Transport Properties of Rocks, B. Evans and T.-F. Wong ed., 1992

A large number of explanations were put forward by the parties involved, many of them with ulterior motives: unsuitable section, inappropriate and damaging explosive, poor workmanship (drilling, bolting, etc.), untested rock bolts, too differed bolt grouting, poor site organisation, unsuitable numerical and structural models, underdesigned rockbolts, inappropriate bolting patterns, unsuitable excavation sequence, poor and inefficient quality control, lack of design methodology (EC7), lack of monitoring and inspection, unforeseen stress release, random vertical joints, lack of spot bolt decision on visible instabilities, inclined defects in sheet facies, too high water pressure imposed in the fissures, etc.

- At that stage, none of the specified monitoring measures that had been prepared for design validation (geological joint mapping, convergence measurement, profile mapping, pull-out test, etc.), that certainly would have helped as new design basic data, had been implemented.

Maintaining roof integrity was crucial for stability, as was
geostiona latter (You et al. Johannesburg ISRM2003)

SYDNEY - UDEC

DESIGN METHODOLOGY FOR HYDROCARBON CAVERNS

INFLUENCE OF IN-SITU STRESSES ON LARGE SECTIONS

INFLUENCE OF IN-SITU STRESSES ON LARGE SECTIONS

VISAKHAPATNAM

BED egg-shape cross-section

Revised basket-handle cross-section

ARMS,4 - 2006 Singapore

UNDERGROUND STORAGE IN MINED CAVERN

PRINCIPLES

Neither a Mine, neither a Civil Construction, neither a Laboratory

ARMS,4 - 2006 Singapore

INFLUENCE OF IN-SITU STRESSES ON LARGE SECTIONS

Basic parameters and model geometry used for the numerical analysis

ARMS,4 - 2006 Singapore

Joint aperture for the rounded shape after product filling

Géotechnique des ouvrages souterrains

comportements post rupture

PREMIÈRES CONCLUSIONS

- Le concept est encore un objet de recherche
- La définition des modes de rupture n'est pas toujours aisée
- Le phénomène peut aussi être relatif.

